Announcements

1) Last day to drop individual classes is today
2) HW H4 up, due next week
$\frac{\text { The Laplace Transform }}{(\text { Section 7.2) }}$
You may have seen the Fourier transform:

$$
\begin{aligned}
f(t) \stackrel{F}{\longmapsto} & \int_{-\infty}^{\infty} f(t) e^{-i s t} d t \\
& =\hat{f}(s)
\end{aligned}
$$

Recall: improper integration!

If f is continuous, the improper integral of f is given by

$$
\int_{a}^{\infty} f(t) d t=\lim _{x \rightarrow \infty} \int_{a}^{x} f(t) d t
$$

where a is a real number and provided the limit exists!

Definition: (Laplace Transform)

If f is continuous on
$[0, \infty)$, we define the
Laplace Transform of f,
denoted by $\mathcal{L}(f)$, as

$$
\mathcal{L}(f)(s)=\int_{0}^{\infty} f(t) e^{-s t} d t
$$

for all $s \in \mathbb{R}$ such that the integral exists 1

Moreover, we can take the Laplace Transform of functions with finitely many discontininuties because we can break up the integral over the points of discontinuity.

Example 1: (Heaviside Function)
Define the Heaviside Function

$$
u(t)= \begin{cases}1, & t \geq 0 \\ 0, & t<0\end{cases}
$$

Compute $\mathcal{L}(u)$.

$$
\begin{aligned}
\mathcal{L}(u)(s)= & \int_{0}^{\infty} u(t) e^{-s t} d t \\
= & \int_{0}^{\infty} e^{-s t} d t \\
= & \lim _{x \rightarrow \infty} \int_{0}^{x} e^{-s t} d t \\
= & \left.\lim _{x \rightarrow \infty} \frac{e^{-s t}}{-s}\right|_{0} ^{x} \\
& (s \neq 0)
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{x \rightarrow \infty}\left(\frac{e^{-s x}}{-s}+\frac{1}{s}\right) \\
& =\lim _{x \rightarrow \infty}\left(\frac{-1}{s e^{s x}}+\frac{1}{s}\right) \\
& =\left\{\begin{array}{l}
\frac{1}{s}, s>0 \\
\text { does not exist, } s<0
\end{array}\right.
\end{aligned}
$$

If $s=0$,

$$
\mathcal{L}(f)(0)=\int_{0}^{\infty} \mid d t
$$

does not exist.

The domain is $S>0$, and on that domain,

$$
\mathcal{L}(v)(s)=\frac{1}{s}
$$

Continuous on its domain!

Example 2: Let $f(t)=t$.
Compute $\mathcal{L}(t)$

$$
\left.\begin{array}{rl}
f(t)(s) & =\int_{0}^{\infty} t e^{-s t} d t \\
& =\lim _{x \rightarrow \infty} \int_{0}^{x} t e^{-s t} d t \\
s=0 & \int_{x \rightarrow \infty}^{x} t d t
\end{array}\right)=\left.\lim _{x \rightarrow \infty} \frac{t^{2}}{2}\right|_{0} ^{x} .
$$

does not exist.

For $s \neq 0$,

$$
\begin{aligned}
& \mathcal{L}(f)(s)=\lim _{x \rightarrow \infty} \int_{0}^{x} t e^{-s t} d t \\
& u=t \quad v=e^{-s t} /-s \\
& d u=d t \quad d v=e^{-s t} d t \\
& x \\
& \int_{0}^{x} t e^{-s t} d t=\frac{t e^{-s t}}{-s}+\int_{0}^{x} \frac{e^{-s t}}{s} d t \\
&=\left.\left(\frac{t e^{-s t}}{-s}-\frac{e^{-s t}}{s^{2}}\right)\right|_{0} ^{x}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\frac{x e^{-s x}}{-s}-\frac{e^{-s x}}{s^{2}}\right)-\left(-\frac{1}{s^{2}}\right) \\
& =\frac{-1}{e^{s x}}\left(\frac{x}{s}-\frac{1}{s^{2}}\right)+\frac{1}{s^{2}}
\end{aligned}
$$

If $s>0$,

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}\left(-\frac{1}{e^{s x}}\left(\frac{x}{s}-\frac{1}{s^{2}}\right)\right) \\
& =0 \text { (1'Hopital's rule) }
\end{aligned}
$$

So if $s>0$,

$$
\mathcal{L}(t)(s)=\frac{1}{s^{2}}
$$

If $s<0$

$$
\lim _{x \rightarrow \infty}\left(-\frac{1}{e^{5 x}}\left(\frac{x}{5}+\frac{1}{s^{2}}\right)\right)
$$

does not exist.

The domain of $f(t)$ is $S>0$, and on that domain,

$$
f(t)(s)=\frac{1}{s^{2}}
$$

Basic Properties
Given functions f and g such that $\mathcal{L}(f)$ and $\mathcal{L}(g)$ exist, then on the intersection of their domains,

1) $\mathcal{L}(f+g)=\mathcal{L}(f)+\mathcal{L}(g)$
2) For any real number C,

$$
\mathcal{L}(c f)=c \mathcal{L}(f)
$$

These properties follow directly from the fact that they hold for integrals.

Not-so-basic Properties of the Laplace Transform
(Section 7.3)

$$
\text { 1) } \begin{aligned}
\mathcal{L}\left(e^{a t} f\right) & (s)=\mathcal{L}(f)(s-a) \\
\mathcal{L}\left(e^{a t} f\right)(s) & =\int_{0}^{\infty} e^{a t} f(t) e^{-s t} d t \\
& =\int_{0}^{\infty} f(t) e^{(a-s) t} d t \\
& =\mathcal{L}(f)(s-a)
\end{aligned}
$$

21

$$
\begin{aligned}
& \mathcal{L}\left(f^{\prime}\right)(s) \\
= & s \mathcal{L}(f)(s)-f(0)
\end{aligned}
$$

Calculate:

$$
\begin{aligned}
\mathcal{L}\left(f^{\prime}\right)(s) & =\int_{0}^{\infty} f^{\prime}(t) e^{-s t} d t \\
& =\lim _{x \rightarrow \infty} \underbrace{\int_{0}^{x} f^{\prime}(t) e^{-s t} d t}_{\substack{\text { integrate } \\
\text { by parts }}}
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{x} f^{\prime}(t) e^{-s t} d t \\
& u= e^{-s t} \quad v=f(t) \\
& d v=-s e^{-s t} d t \quad d v=f^{\prime}(t) d t \\
& x \\
& \int_{0}^{\prime} f^{\prime}(t) e^{-s t} \\
&=\left.f(t) e^{-s t}\right|_{0} ^{x}+\int_{0}^{x} s f(t) e^{-s t} d t \\
&=\left.f(t) e^{-s t}\right|_{0} ^{x}+s \int_{0}^{x} f(t) e^{-s t} d t
\end{aligned}
$$

So taking the limit as $x \rightarrow \infty$,

$$
\begin{aligned}
\mathcal{L}\left(f^{\prime}\right)(s)= & s \mathcal{L}(f)(s)+\lim _{x \rightarrow \infty} \frac{f(x)}{e^{s x}} \\
& -f(0) \\
= & s \mathcal{L}(f)(s)-f(0)
\end{aligned}
$$

provided $\lim _{x \rightarrow \infty} \frac{f(x)}{e^{5 x}}=0$!

